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Abstract

A theoretical study is carried out for the distribution of heat ¯ux to the boundary, as well as of the temperature
and ¯ow velocity in the lower part of the volume taken up by a one-component heat-generating ¯uid. The treatment
is based on the analysis of the converging boundary layer in view of the conditions of joining its characteristics with

those of the ¯uid in the stably strati®ed region of the volume. It is found that the dependence of the heat ¯ux at the
boundary, q, on the polar angle y at y� � y� 1 (where y� is some boundary angle), and the dependence of the
temperature in the volume on the ratio of the height z to the characteristic size of the volume R, are power

dependences, q0ya, Tb0�z=R�b: The exponents for the cases of laminar and turbulent boundary layers are a � 2,
b � 4=5 and a � 24=13, b � 9=13, respectively. The heat ¯ux at y < y� weakly depends on y and assumes the
minimum value at y � 0: The ratio of the minimum heat ¯ux qm to its average value hqi, as well as the boundary

angle y� as a function of the modi®ed Rayleigh number, are given by the estimates qm=hqi0Raÿ1=6I , y�0Raÿ1=12I :
The results are in quite satisfactory agreement with experiment. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The problem of melt retention in the reactor vessel
during severe accidents in nuclear power plants in-
volving the core destruction is associated with the

problem of processes of heat transfer from the heat-
generating ¯uid in a closed volume. These processes
are investigated by experimental [1±4] and numerical

[5±8] simulation, as well as within the framework of
analytical approach [9±11]. Most of the investigation
results describe the distribution of heat ¯ux between
large portions of the boundary of the volume taken up

by the ¯uid, and the respective correlation's are, in
fact, integral. At the same time, the solution of the
problem of nuclear reactor safety requires the knowl-

edge of more detailed characteristics of heat ¯ux distri-

bution. This is especially true for the lower portion of

the boundary of the reactor vessel, where special con-

ditions for external heat removal may occur as com-

pared with other portions of the boundary [12] (see

also Ref. [13]).

This paper describes the theoretical treatment of the

distribution of heat transfer from a heat-generating

¯uid in the neighborhood of the lowest point (pole) of

the volume taken up by the ¯uid. As demonstrated

below, the space dependencies of the characteristics of

¯uid in this region are power dependencies. It is our

objective to derive the exponents, while abstracting

ourselves from numerical factors of the order of unity.

The subsequent section contains the general formu-

lation of the problem. The distribution of heat transfer

on the boundary is closely associated with the distri-

bution of temperature and ¯ow velocity of ¯uid in the
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volume, and the latter one are the subject of Section 3.
Section 4 deals with the properties of converging
boundary layer in the neighborhood of the pole and

gives the limiting relations for the distribution of heat
transfer on the boundary, as well as of the temperature
and ¯ow velocity of ¯uid in the bulk. Concluding

remarks and comparison of the theory with experimen-
tal data are made in Section 5.

2. Formulation of the problem

We will assume that the volume, in which the ¯uid
is enclosed, corresponds to a body of revolution
around a vertical axis with the ®nite radius R of its

curvature at the pole. We will further assume that the
quantity R is, at the same time, the characteristic
dimension of the entire volume in question. The pos-

ition of the running point on the downward-directed
portion of the boundary will be characterized by the
angle between a normal to the boundary and the verti-
cal axis, y: The vertical coordinate, counted from the

pole level, will be designated as z. In what follows, we
will be interested in the values of y� 1 and z� R:
The temperature of the boundary at y� 1 will be

assumed constant and treated as the origin for the
reference for ¯uid temperature. The geometry of the
problem and related notations are shown diagrammati-

cally in Fig. 1.
The heat transfer to the downward-directed portion

of the boundary is determined by the characteristics of

the boundary layer (BL) present in this portion (at
y01, this boundary layer is similar to the well-studied
[14] free-convection BL on a vertical wall in a ¯uid

without internal heat sources). As the pole is
approached at y� 1, the properties of the BL assume
a fundamentally di�erent behavior. Here, by virtue of

the obvious geometric conditions, the BL becomes con-
verging, this giving rise to an important requirement,
which consists in that the longitudinal component of
velocity in the BL, u, must vanish at the pole,

u�y � 0� � 0 �1�

Nomenclature

a, b, f, d exponents in Eq. (22)
BL boundary layer
c speci®c heat of ¯uid

g acceleration due to gravity
Q volumetric heat release
q heat ¯ux

hqi average value of heat ¯ux
qm minimum value of heat ¯ux
R curvature radius of pool boundary at the

pole
RaI modi®ed Rayleigh number, RaI � agQR5

nwl
T ¯uid temperature in the boundary layer
T ' turbulent pulsation value of the ¯uid tem-

perature in BL
Tb ¯uid temperature in the bulk of volume
u turbulent pulsation value of longitudinal

component of velocity in BL
u ' longitudinal component of ¯ow velocity in

BL

v transverse component of the ¯ow velocity
in BL

v ' turbulent pulsation value of transversal

component of velocity in BL
~V ¯ow velocity in the bulk of volume
Vz vertical component of the ¯ow velocity in

the bulk of volume
y coordinate normal to the boundary
z vertical coordinate

Greek symbols
a thermal expansion coe�cient
d thickness of BL

dT thickness of thermal sublayer in turbulent
BL

l thermal conductivity

n kinematic viscosity
w thermal di�usivity
y polar angle

Fig. 1. Geometry of the problem.
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This means that, at y� 1, the BL is not accelerating
as in the case of y01, but decelerating. In addition, as

distinct from the region of y01, where the boundary
layer draws in the ¯uid from the bulk, at y� 1 it
returns the ¯uid to that bulk. Yet another important

property of the BL, acquired at y� 1, consists in
moderation of the e�ect of the buoyancy force in the
longitudinal direction of the BL.

Owing to condition of Eq. (1), the ¯ow velocity and
temperature of ¯uid in the bulk (outside of the BL) at
z� R strongly depend on z, which, in turn, has a con-

siderable e�ect on the BL characteristics and, accord-
ingly, on the distribution of the heat ¯ux through the
boundary at y� 1: Therefore, the problems on the BL
and on the distribution of the ¯uid ¯ow velocity and

temperature outside of the BL must be solved simul-
taneously in view of the matching conditions on the
free (directed into the ¯uid) side of the BL. These con-

ditions consist in continuity of the ¯uid temperature
and of the normal component of its ¯ow velocity,

T � Tb v � Vn at y � d �2�
where T and Tb denote the temperature in the BL and
in the bulk, respectively; v and Vn denote the normal
to the boundary component of velocity of the ¯uid

¯ow in the BL and in the bulk, respectively; y is the
coordinate counted from the boundary and normal to
it; and d is the boundary layer thickness.

After that, one should use the equations of hydro-
dynamics and heat transfer for the BL and bulk taking
account of Eqs. (1) and (2) in order to derive the regu-
larities of the behavior of heat transfer to the bound-

ary and of the distribution of the ¯ow velocity and
temperature of the ¯uid in the lower part of the
volume taken up by the ¯uid.

3. Distribution of temperature and ¯ow velocity in the

bulk

Outside of the BL, the viscosity and thermal conduc-
tivity are insigni®cant. The balance equation for the

vertical component of momentum in the lower portion
of the volume, where the ¯ow is formed owing to the
return of ¯uid from the BL, gives the estimate

Tb ÿ 1

rga
@p

@z
0 V 2

n

rgaz
�3�

In view of relations of Eq. (2), as well as of the esti-

mates following from the conditions of balance for
mass and longitudinal component of momentum in the
BL (see Section 4),

v0 d������
Rz
p u0

��������������
gaTd 2

R

s
�4�

Eq. (3) leads to the following relation valid at z > d:

Tb � 1

rga
@p

@z
�5�

Further, we will estimate the characteristic magnitude
of variation fdTbghor of temperature in the horizontal
plane for a ®xed value of the coordinate z. The re-

spective magnitude of variation of pressure according
to the balance equation for the horizontal component
of momentum is related to the characteristic value of

the horizontal component of velocity in the bulk by
the estimate�
dp
	

hor
0rV 2

h �6�

On the other hand, the balance equation for mass in
the bulk and Eqs. (2) and (4) yield

Vh0

����������������
gaTbd

2

z

s

From this estimate, in view of Eqs. (5) and (6), we de-
rive

�
dTb

	
hor

0
�
d
z

� 2

Tb �7�

Hence it follows that, at z� d, the temperature in the

bulk depends on the vertical coordinate alone and,
therefore, stable strati®cation takes place,

Tb � Tb�z� �8�
The energy balance equation in the bulk has the form:ÿ
~VrT

�
� Q

rc
�9�

where ~V is a ¯ow velocity in the bulk of volume, Q the

volume density of heat release, c the speci®c heat, and
r is the density of ¯uid. In view of Eq. (8), it follows
from Eq. (9) that the vertical component of ¯ow vel-

ocity Vz in the bulk, just as the temperature, is a func-
tion of the vertical coordinate alone and, in the region
of z� d, these quantities are related by the equality:

Tb � Q

rc

�z
0

dz 0

Vz�z 0 � �10�

4. Converging boundary layer and limiting dependencies

In analyzing the processes of heat- and mass-transfer
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in a converging BL, we will use the curvilinear system
of coordinates described in Section 2. The cases of

laminar- and turbulent-BLs will be treated separately.

4.1. Laminar boundary layer

In the range of values of the polar angle y, which
satisfy the condition

d
R
� y 2 � 1 �11�

the set of equations, expressing the property of conser-

vation for mass, longitudinal component of momen-
tum and energy, takes the form

ÿ 1

Ry
@

@y
�yu� � @v

@y
� 0 �12�

ÿ 1

Ry
@

@y
�yu 2 � � @

@y
�vu� ÿ n

@ 2u

@y 2
� ga�Tb ÿ T�y �13�

ÿ 1

Ry
@

@y
�yuT� � @

@y
�vT� � w

@ 2T

@y 2
�14�

Here, n is the kinematic viscosity, w the thermal di�u-

sivity, a the coe�cient of volume expansion, and g is
the acceleration due to gravity.
In deriving the system of equations (12)±(14), the

pressure was eliminated by using the balance equation
of the transverse component of momentum in the BL
and Eq. (5). The validity of the left-hand part of

inequality of Eq. (11) made it possible to ignore the
contribution of volume heat release in Eq. (14).
The shape of transverse temperature pro®le in the

BL is rather important from the standpoint of further

derivation. In an ordinary (free-convection) BL in the
vicinity of a vertical wall, with the uniform tempera-
ture of ambient media, the temperature pro®le is

monotone [14]. A di�erent situation takes place in the
presence of stable strati®cation in the bulk. The tem-
perature on the outside of the BL must coincide with

the ambient temperature (see Eq. (2)), therefore, down-
stream of the ¯ow, the temperature inside the BL
becomes higher than that on the outside, because of
convective drift from its more heated upper portions.

As a result, the buoyancy force proves to be directed
oppositely to the velocity of longitudinal motion of the
BL, thereby ensuring its deceleration and, in the ®nal

analysis, the validity of the boundary condition of Eq.
(1). Because the temperature distribution in the bulk is
formed on the basis of the return of ¯uid from the BL,

the maximum excess of temperature inside the BL
above the ambient temperature must be of the same
order of magnitude as the latter temperature,

max�Tÿ Tb �0Tb �15�
The temperature pro®le in a converging BL is shown
diagrammatically in Fig. 2.
Note that the nonmonotonic temperature pro®le in

the boundary layer in the vicinity of a vertical wall
with a strati®ed ambient medium, derived as a result
of numerical calculations, was reported in Ref. [15].

We will now turn to derivation of limiting dependen-
cies for heat transfer to the boundary and for the dis-
tribution of temperature and ¯ow velocity in the bulk.

The following three estimating relations are obtained
from Eqs. (12) to (14) with account of Eq. (15):

v0 d
Ry

u �16�

u 20gaTbRy
2 �17�

ud 20wRy �18�
In view of the ®rst one of conditions of Eq. (2), the

space argument of Tb in Eq. (17) is assumed to be

z � R
y 2

2
�19�

The following relation is derived for temperature from

Eq. (10) in view of the second one of equalities from
Eq. (2) and estimate (16) on condition (19):

Tb0
QR 2y3

rcu
�20�

One more relation follows from the very de®nition of
heat ¯ux,

q0l
Tb

d
�21�

No scale for y is present in the range of values of the

Fig. 2. Temperature pro®le of the converging boundary layer.
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angular variable de®ned by inequality of Eq. (11).
Therefore, the dependencies of the characteristics of

¯uid on y must be power dependencies. We will de®ne
the exponents by the relations

qAya TbA�z=R�b uAy f dAyd �22�
The substitution of these de®nitions in the estimating
relations of Eqs. (16)±(18) and (21) in view of Eq. (19)
leads to the set of linear algebraic equations for the

exponents in Eq. (22):

f � b� 1
f � 1ÿ 2d
2b� f� d � 3
a � 2bÿ d

�23�

The solution of this system leads to the following
result:

a � 2, b � 4=5, f � 9=5, d � ÿ2=5 �24�
Relations of Eq. (22) with exponents of Eq. (24)
describe the limiting dependencies for heat transfer to
the boundary and for the thermohydrodynamic charac-

teristics in the lower portion of the volume taken up
by an heat-generating ¯uid in the case of laminar BL.

4.2. Turbulent boundary layer

As usual, we will distinguish between the average

values of the components of velocity and temperature
in the BL, with the designations u, v, and T, on the
one hand, and the turbulent pulsation's u ', v ', and T ',
corresponding to these quantities, on the other hand.
An ordinary estimate takes place for the heat ¯ux:

q0lTb

dT

�25�

where dT is the thickness of the thermal sublayer. An
estimate for dT is obtained from two conditions on the

free (directed into the ¯uid) side of the thermal sub-
layer, namely, the equality (by the order of magnitude)
of the conduction and convection contributions to the

heat ¯ux to the boundary,

v 0dT0w at y0dT �26�
and the comparability of the pulsation values of the

kinetic and potential energy of ¯uid,

v 0 20gaTbdT at y0dT �27�
We eliminate dT and v ' from Eqs. (25) to (27) to derive

the estimate for the heat ¯ux,

q0rc
ÿ
wgaT4

b

�1=3 �28�

coinciding with the case of turbulent BL on a vertical
wall with isothermal ambient medium [16].

Our further objective is to determine the form of the
dependence of temperature Tb in the vicinity of the
boundary on the polar angle y at y� 1: For this pur-

pose, we will turn to the outer region of the turbulent
BL (turbulent core), in which the viscosity and thermal
conductivity are insigni®cant and which corresponds to

y0d, where d is the thickness of the turbulent BL. The
condition of balance of momentum in this region leads
to the following estimates:

v 0 20gaT 0d �29�

u 20ga�Tÿ Tb �Ry 2 �30�

The property of conservation of heat ¯ux gives the re-
lation

v 0T 00 q

rc
�31�

In the y0d region, the pulsation parts of velocity and
temperature are respectively comparable in magnitude

with the mean transverse component of velocity and
with the deviation of the average value of temperature
from the value of temperature in the bulk portion
adjoining the boundary layer,

v 00v, T 00Tÿ Tb �32�

We use Eqs. (16), (31) and (32) to eliminate the vari-
ables v ', T ' and Tÿ Tb from Eqs. (29) and (30) and
derive the relations�
ud
Ry

�3

0ga
q

rc
d �33�

u30ga
q

rc
R 2y3

d
�34�

We substitute de®nitions of Eq. (22) in view of Eq.
(19) into Eqs. (20), (28), (33) and (34) to derive the set

of equations for ®nding the exponents de®ned by Eq.
(22),

3f� 2dÿ a � 3
3f� dÿ a � 3
2b� f� d � 3

a � 8

3
b

�35�

The solution of this system is

a � 24

13
, b � 9

13
, f � 21

13
, d � 0 �36�
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Eq. (22) with exponents of Eq. (36) yield the sought
qualitative regularities of the behavior of thermohydro-

dynamic characteristics in the case of turbulent BL in
the range of Eq. (11). Note that, according to Eqs.
(24) and (36), exponent b determining the vertical

coordinate dependence of the bulk temperature (see
Eq. (22)) is less than unity. Therefore, we have the
inequality:

@ 2Tb

@z 2
< 0 �37�

To conclude this section, we will dwell on the case of
extra small polar angles corresponding to

y 2 � d
R

�38�

assuming that the ¯ow in this case is laminar. The bal-

ance equation (12) for mass yields the estimate

u0u�
y
y�

�39�

where u�0v�Ry�=d�, v� � v�y��, and d� � d�y��: The
limiting angle y�, dividing the regions de®ned by
inequalities of Eqs. (11) and (38), is found from the re-

lation

y 2
�0

d�y� �
R

�40�

In view of Eq. (39), it follows from the momentum
balance equations that, in the region de®ned by Eq.
(38), the temperature is independent of the polar angle.
By virtue of Eq. (39), the ®rst term at the left in the

energy balance equation (14), on condition of Eq. (38),
is to be ignored. In addition, internal heat release must
be included in Eq. (14). As a result, this equation takes

the form

v
@T

@y
� w

@ 2T

@y 2
� Q

cr
�41�

Hence it follows that in the range of angles y� y� the
boundary layer thickness, just as the temperature in
the layer, is independent of the angle y, and these
quantities have the estimates

d0d�0w=v�, T0T�y� �0Qd 2
�

l
�42�

It follows from Eqs. (42) and (21) that, at y� y�, the
heat ¯ux to the boundary is nearly constant. At y � 0

it corresponds to the minimum which, in view of Eq.
(40), is given by the estimate

qm0q� � q�y� �0hqiy 2
� �43�

where hqi0QR is the average value of the ¯ux density
over the entire boundary.

5. Discussion and conclusion

The main implications of the foregoing analysis are
as follows. For small values of the polar angle y� 1,

the heat ¯ux at the boundary sharply decreases with
the angle, due to the broadening of the converging BL
and temperature strati®cation in the bulk. A concen-

tration of horizontal isotherms in the bulk volume
takes place as a consequences of the inequality Eq.
(37). The asymptotic behavior of the heat ¯ux and the

bulk temperature at y� 1 and z� R depends on a
¯uid ¯ow regime in the converging BL.
In the case of the laminar converging BL, the

asymptotic dependencies at y� � y� 1 and

d� z� R, according to Eqs. (22) and (24), are deter-
mined by the expressions:

qAy 2 TbA
�
z

R

�4=5

�44�

At y0y�, where the angle y� � 1 is de®ned by Eq.
(40), the decrease of the heat ¯ux slows down and, at
y� y�, it becomes nearly constant taking a minimum

value at y � 0:
The asymptotic dependencies for the case of turbu-

lent regime in the converging boundary layer, accord-
ing to Eqs. (22) and (36) have the form:

qAy 24=13 TbA
�
z

R

�9=13

�45�

A converging turbulent boundary layer takes place
when the turbulent mode could develop at an earlier,

upstream stage of the BL, at y01: In accordance with
Eq. (36), in view of de®nitions of Eq. (22), the Rey-
nolds number at y� 1 varies by the law

Re � �ud=n�Ay 21=13 �46�
according to which, in the case of relatively not large
excess over the threshold of transition to turbulence,
which is important from the standpoint of develop-
ment of safe nuclear reactor (for values of modi®ed

Rayleigh number of RaIR1017), the Reynolds number
drops fairly rapidly below the critical value as the
polar angle decreases, this leading to the transition of

converging BL to the laminar mode, and then we have
the asymptotic Eq. (44) again.
We will now estimate the ratio of the minimum

value of heat ¯ux at y � 0 to the average value of the
¯ux on the boundary, as well as the value of the
boundary angle y�, behind which (at y� y�� the heat
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¯ux remains virtually constant. According to Eqs. (22)
and (24), the behavior of the BL thickness at y� 1 is

de®ned by the formula

d�y� � d0y
ÿ2=5 �47�

where d0 is of the order of the BL thickness at y01:
The substitution of Eq. (47) into Eq. (40) gives

y�0�d0=R�5=12 �48�
In accordance with de®nition of Eq. (21) and the

results of [9,10], the dependence of d0 on the modi®ed
Rayleigh number is given by the estimate
d0=R0Ra

ÿgdn
I , where gdn � 0:2: Making use of this esti-

mate and Eqs. (40), (43) and (48), we get estimating re-
lations for the ratio of the minimum heat ¯ux on the
boundary to its average value and for the boundary

angle y�:

�qm=hqi�0Raÿ1=6I y�0Raÿ1=12I �49�

In conclusion, we will dwell on the comparison of our
results with experimental data. All the known exper-

iments on the subject in question demonstrate a sharp
decrease of the heat ¯ux with polar angle at y� 1 and
temperature strati®cation in the bulk region of the

volume with a heat generating ¯uid at z� R, as well.
Comparison of theoretical results for the heat ¯ux dis-
tribution described by Eqs. (44) and (49) with exper-

imental data obtained in Refs. [17±19] is given in
Table 1. There is a qualitative agreement between the-
ory and experiment on the heat ¯ux angular depen-
dency and the minimum to average heat ¯ux ratio.

However, to perform a more detailed comparison, a
higher precision and space resolution for the heat ¯ux
distribution measurements are probably required.

In [20], the temperature distribution in a volumetri-
cally heated ¯uid was registered by optical methods. In
Fig. 3 shown is a typical hologram from [20] describing

the distribution of isotherms. A distinctive picture of
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Fig. 3. Typical hologram from [20] for the distribution of iso-

therms.
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stable temperature strati®cation in the bulk region of
the lower portion of the ¯uid volume is seen at this
hologram. In addition, these data are indicative of the
concentration of horizontal isotherms in downward

direction. Such behavior is in agreement with the
theoretical inequality (37). Fig. 4 shows a quantitative
comparison between the theory and experimental data

on the bulk temperature distribution obtained in [20]
at the power heat release corresponding to RaI �
1:04� 108: A theoretical dependency of the tempera-

ture on a dimensionless reduced height, in accordance
with Eq. (44), was taken in the form Tb0Z 4=5: There
is close correspondence between the theory and the ex-

perimental data with discrepancy at most 2.7%. There-
fore, on the whole, one can talk about quite
satisfactory agreement between theory and experiment.
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